Home > finite automata examples with solution

### Conversion Of E-NFA To NFA – Finite Automata –

Conversion Of E-NFA To NFA - Finite Automata The Process Of Conversion Of ε-NFA To NFA Is Called As Thomson Construction. Note:- No Change In Initial State No Change In The Total No. Of States May Be Change In Final States Algorithm Let M=(Q,Σ,δ,q0,F) - ε-NFA M1= (Q1,Σ,δ1,q01,F1) - NFA 1) Initial State q01=q0 2) Construction Of δ1 δ1 (q,x)=ε-Closure(δ(ε-Closure(q),x) 3) Final State Every State Who's ε-Closure

### DFA Example : Complement Of Finite Automata

Complement Of Finite Automata Means The Finite Automata Which Is Obtained By Interchanging Final And Non-Final States Is Known As Complement Of Finite Automata. In This Concept, I'll Change Final States To Non-Final To Final State And Final To Non-Final State. By Doing This The Language Changes. M-Automata(DFA) L-Language M Supports L Language   The String Which

### Compound Automata (DFA Example): Construct The Minimum Finite Automata That Accept All The Strings Of a & b Such That String Contains At least 2 a’s & ηb|w|≅0mod3

Construct The Minimum Finite Automata That Accept All The Strings Of a & b Such That i) String Contains At least 2 a's & ηb|w|≅0mod3 Solution:- (Check Previous Two Problems For Better Understanding) CONDITION GIVEN:- String Should Contain At least 2 a's And ηb|w|≅0mod3(Means No Of b's In String Is Approximately Equal To O Mod 3(If

### Compound Automata(DFA Example): Construct The Minimal Finite Automata That Accept All The String Of a & b Such That There Is One ‘a’ Or One ‘b’

Construct The Minimal Finite Automata That Accept All The String Of a & b Such That i) There Is One 'a' Or One 'b'   Solution:- Compound Automata Means Combining Two Automata's (Machines) Which Becomes One Automata(Machine). Let's Know Why We Should Combine Two Automata. If The Question Contains More Than One Condition ' I Have Solved

### DFA Example : Construct The Minimal Finite Automata And Find Number Of States In The Following

Construct The Minimal Finite Automata And Find Number Of States In The Following i) L={ambn/m,n≥0} Patter Question a=input symbol b=input symbol m&n≥0 So My Language Is L={ε,a,b,ab,aab,aaab,aaabbb......} // Infinite String   Explanation Of Language m,n Can Be '0' (zero) m can be '1' or '2' or '3'...... n can be '1' or '2' or '3'....... If m,n is '0'(zero) then a0b0  Becomes (0), Means ε(Epsilon) If

### DFA Example : Construct The Minimal Finite Automata That Accepts All Base 8 Numbers Which Are Divisible By ‘6’

Construct The Minimal Finite Automata That Accepts All Base 8 Numbers Which Are Divisible By '6' (Binary Means Base 2, i.e Σ(0,1) Input Symbols Will Be 2 Only 0 & 1) (Integer Means Base 10,i.e (0,1,2,3,4,5,6,7,8,9) Input Symbols Will Be 10 Only 0&1&2&3&4&5&6&7&8&9)   Here Given Input Symbols Are Base '8', It Means OCTAT. My Input

### DFA Example : Construct Minimal Finite Automata That Accepts All Strings Of 0’s & 1’s Such That a) |w|≅0 (mod 2), b) |w|≅1 (mod 2), c) |w|≅2 (mod 3)

Construct Minimal Finite Automata That Accepts All Strings Of 0's & 1's Such That a) |w|≅0 (mod 2), b) |w|≅1 (mod 2), c) |w|≅2 (mod 3) |w|= Length Of 'w' String a) |w|≅0 (mod 2) Means If I Divide Length Of String With '2' I Should Get Remainder '1' 'ε' Is Length '0' String,

### Construct Minimal Finite Automata That Accepts All Strings Of 0’s And 1’s Such That i) η0|w|≅0 (mod 3) ii) η0|w|≅0 (mod 4)

Construct Minimal FA That Accepts All Strings Of 0's And 1's Such That i) η0|w|≅0 (mod 3) ii) η0|w|≅0 (mod 4) Σ={0,1} i) η0|w|≅0 (mod 3) // η0 Is No. Of Zero's, |w| Is In The String, If I Divide With '3', I'll Get Remainder '0'. Means, The No. Of 0's In The String,If I Divide